SHORT COMMUNICATION

INSECT MOULTING HORMONE FROM ACHYRANTHES ASPERA

A. BANERJI and M. S. CHADHA

Biology Division, Bhabha Atomic Research Centre, Trombay, Bombay-85, India (Received 21 October 1969, in revised form 21 November 1969)

Abstract—Ecclysterone (1) has been isolated from the methanolic extract of Achyranthes aspera roots.

Achyranthes aspera (Amaranthaceae) is a common Indian weed and is used widely in folk medicine. The pronounced insect moulting hormonal activity of the extracts of the roots has been found to be due to the presence of ecdysterone (I).

The methanolic concentrate of the roots of A, aspera was fractionated into CHCl₁ and n-butanol soluble portions. The butanol extract on column chromatography on silica gel followed by preparative TLC and crystallizations (MeOH-ether) furnished a colourless crystalline compound (m.p. 237-39°, 90 mg/kg) having a molecular formula C₂₇H₄₄O₇. The colour reactions, NMR and mass spectra suggest it to be a polyhydroxyphytosterol. U.v. (242 nm) and i.r. (1642 cm⁻¹) absorptions indicate the presence of 7-ene-6-one chromophore. Treatment of the compound with HCl-MeOH gives two products having u.v. maxima at 241 and 296 nm and indicates the presence of 14-hydroxy-7-ene-6-one system.² The mass spectrum shows the characteristic fragmentation of the side-chain of the ecdysones (m/e 99) and $81).^3$ The data discussed above agree with those of ecdysterone (I) and inokosterone (II). However, the presence of five tertiary m/e signals at $\delta 1.05$ ($C_{19}H_3$), $\delta 1.17$ ($C_{18}H_3$), $\delta 1.34$ ($C_{26}H_3$ and $C_{27}H_3$) and $\delta 1.55$ ($C_{21}H_3$) as seen in the NMR spectrum favours structure I. Further, an acetate (Ac₂O/pyridine, 25°, 16 hr.) was obtained which corresponded in TLC (R_f 0·4, SiO₂, EtOAc-hexane, 8:2) to ecdysterone-2,3,22-triacetate; II, under similar conditions, gives inokosterone-2,3,22,26-tetraacetate which is readily differentiated by TLC (R_e 0.72). The identity of the compound as ecdysterone was finally established by a direct comparison with an authentic sample (mixed m.p., TLC, i.r., u.v. and NMR).

Acknowledgement—We are grateful to Professor T. Takemoto, Tohoku University, Japan, for providing the authentic samples of ecdysterone and inokosterone.

¹ Wealth of India, Raw Materials, Vol. I, p. 24 (Council of Scientific and Industrial Research, New Delhi) (1948).

² P. KARLSON, H. HOFFMEISTER, H. HUMMEL, P. HOCKS and G. SPITELLAR, Chem. Ber. 98, 2394 (1965).

³ F. Hampshire and D. H. S. Horn, Chem. Comm. 37 (1966).

⁴ T. TAKEMOTO, S. OGAWA and N. NISHIMOTO, Yakugaku Zasshi 87, 1469 (1967).